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Origins of phase transitions in small systems
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The identification and classification of phases in small systems, e.g., nuclei, social and financial networks,
clusters, and biological systems, where the traditional definitions of phase transitions are not applicable, is
important to obtain a deeper understanding of the phenomena observed in such systems. Within a simple
statistical model, we investigate the validity and applicability of different classification schemes for phase
transtions in small systems. We show that the whole complex temperature plane contains necessary informa-
tion in order to give a distinct classification.
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The thermodynamics of small systems, e.g., Bo
Einstein condensates in magneto-optical traps@1–3#, the
nuclear liquid-gas transition observed by multifragmentat
in heavy ion reactions@4–6#, and the solid-liquid phase tran
sition of sodium clusters@7–9#, have gained increasing inte
est over the last few years. Because these systems ar
away from the thermodynamic limit, the standard tools
the description of phase transitions are not applicable
other concepts are needed. Within the last few years sev
classification schemes for phase transitions in finite syst
have been proposed@10#. In this report, we compare thes
classification schemes by means of a simple statistical m
for atomic clusters and show that graveling transitions occ
ring in these models can only be completely understood
considering the whole complex temperature plane.

Among others, Gross and Votyakov and Grosset al., have
suggested a microcanonical treatment@10–12#, where phase
transitions of different order are distinguished by the cur
ture of the entropyS5kB ln V(E). According to their
scheme, aback bendingin the microcanonical caloric curv
T(E)51/]E ln@V(E)#, i.e., the appearance of negative he
capacities, is a mandatory criterion for a first-order transiti
Caloric curves without back bending, where the associa
specific heat shows a hump, are classified as higher-o
transitions.
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From classical statistical mechanics, it is clear that
back-bending feature is forbidden in the thermodynam
limit by the van Hove theorem@13#. Since the canonical and
the microcanoncical caloric curves must give the same
sults in this limit and the canonical caloric curve is propo
tional to the mean-squared energy fluctuations the micro
nonical caloric curve cannot exhibit a back bendin
However, in small systems necessary and sufficient co
tions for this type of microcanonical caloric curves ha
been derived by Wales and Berry and Wales and D
@14,15#. An analysis of thermodynamic stability has gain
that a loop in the microcanonical caloric curve with turnin
pointsTm.Tf occurs if the entropyS is bimodal for canoni-
cal temperatures in this range. As an equivalent condit
the authors showed that neglecting phase-space regions
responding to intermediate compositions, i.e., solidlike a
liquidlike forms, also result in a back bending.

We have proposed a classification scheme based on
distribution of zeros of the canonical partition function in th
complex temperature plane@16#. The classical partition func-
tion

Z~b!5S 1

2pb D 3N/2E dx3N exp@2bV~x!# ~1!
edles.

FIG. 1. Logarithm of the canonical potential-energy difference expectation value log(^DE&) in the complex temperature plane for~a!

r2 /r1550 000,~b! r2 /r155000, and~c! r2 /r150.5. The location of the zeros of the partition function are signaled by the sharp ne
In all cases, the distributions of zeros indicate first order phase transitions.
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can be factored into a product of the kinetic part and a pr
uct depending on the zerosBk5bk1 i tk , with B2k5Bk* of
this integral function in the complex temperature plane,

Z~b!5S 1

2pb D 3N/2

)
k52M

M S 12
b

Bk
DexpS b

Bk
D . ~2!

Phase transitions then can be classified by a set of t
parameters (a,g,t1), describing the distribution of zero
close to the real axis, whereg5tann is the crossing angle
between the real axis and the line of zeros, anda is deter-
mined from the approximated density of zerosf(t);ta on
this line. For infinite systems, it has been exactly shown t
a50, g50, andt150 corresponds to a first-order pha
transition, whilea.0 corresponds to a higher-order pha
transition@17#. For finite systems,t1 is always greater than
zero reflecting the size of the system. The classificat
scheme can be extended to values ofa,0 also being inter-
preted as first-order phase transitions. This scheme se
tively reproduces the space dimension and particle-num
dependence of the transition order in Bose-Einstein cond
sates@18# and the first-order nature of the nuclear multifra
mentation phase transition@19#.

The differences between both schemes can be reve
within a simple statistical model for atomic clusters. A ha
monic superposition of different vibriational densities
states is well established in the cluster literature@20–23#.
This multiple normal-modes model describes structural tr
sitions within small noble gas clusters by considering sev
isomers and the vibrational eigenfrequencies of the isom
For a two-isomer system, the partition function can be w
ten as

Z~b!5(
i 51

2

s i exp~2bEi ! )
j 51

3N26
2p

bv i j

5b2(3N26)@r1 exp~2bE1!1r2 exp~2bE2!#,

~3!

where thev i j are the normal modes of isomeri and thes i
are the permutational degeneracies of the isomers anr i

5s i) j 51
3N26(2p/v i j ). The zeros ofZ

FIG. 2. Microcanonical caloric curves for the multiple norma
modes model with energy difference between the isomersDE520.
For ~a! N510, 12, and 15 and constantr2 /r1550 000 the back
bending is manifest forN510, can be tuned out by increasing th
particle number, and disappears forN as low asN515. In ~b! for
constantN510, the back bending can be tuned out by decreas
the ratior2 /r1.
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Bk5@ ln~r2 /r1!1 i ~2k11!p#/DE, ~4!

lie on a straight line and are equally spaced yieldinga5g
50, thus implying a first-order phase transition in any ca
(DE5E22E1) ~see Fig. 1!. It is important to note, that with
increasing system size, the energy difference between
isomers will also increase, thus,t1 approaches zero. Th
microcanonical caloric curveT(E)51/]E ln@V(E)# for this
model can be calculated via the inverse Laplace transf
V(E)5L 21$Z(b)%. Figure 2 shows that the back bendin
advocated in the Gross scheme for a first-order phase tra
tion can be tuned in and out by variation of the model p
rameters.

The kinetic part of the partition functionb2(3N26) plays
the crucial role. If this is taken into account the micr
canonical caloric curves change dramatically, whereas
part has no effect on the distribution of zeros~the particle
number dependence of the canonical partition function is
only reflected by the kinetic part itself but also implicitly b
the ground-state energies!. The change in the topology of th
configuration space or equivalently configurations space
gions with significantly changing vibrational entropies see
to be a necessary condition for phase transitions in sm
systems. Similar results have been pointed out by Franzoet
al. @24,25#. Equivalent findings are those of Wales an

g

FIG. 3. Canonical specific heat reduced by the kinetic contri
tion for the same values ofr2 /r1 as in Fig 1. For values withr2 /r1

larger than 1, the expected signals of a first-order phase trans
are seen. The valuer2 /r150.5 corresponds formally to a first-orde
phase transition at negative temperature. Thisgraveling transition
exhibits at positive temperature a very weak10 hump in the spe
heat~the graph is amplified by a factor of 25!.

FIG. 4. Specific heat in the complex temperature plane
r2 /r150.5. The figure displays how the interplay of the zero a
the pole of the specific heat influences the behavior of the spe
heat curve at positive temperatures.
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Berry, and Wales and Doyeet al. @14,15#. Utilizing also the
harmonic superposition of vibriational densities of states
assuming ’’coexistence’’ of liquidlike and solidlike phase
the loop in the microcanonical caloric curve is also tuna
by variations of system-inherent parameters. Especially,
mean difference in the potential energy of both phases
respond to variations ofr2 /r1 in our model.

Within classical statistical mechanics, the kinetic part
canonical partition function is separable and the partit
function splits up into a kinetic and a potential part that c
be handled independently. Within the microcanonical
semble structural phase transition might bewashedout or
hidden by the kinetic-energy contributions to the entro
Equivalent effects of the kinetic- and potential-energy co
tributions have been previously found@15#.

A very interesting feature of the multiple normal-mod
model occurs in the case where the isomer with the lo
ground-state energy has a larger vibrational entropy@see Fig.
1~c!#. In this case, formally a first-order phase transition
ev

A

t.

04710
d
,
e
e
r-

f
n
n
-

.
-

r

t

negative temperatures occurs. The structural transition
tween the isomers, which occurs when the temperatur
increased, is accompanied by a drop in the vibrational
tropy. This is a graveling transition with a significantly
smaller signal in the specific heat than that of thenormal
transition~see Fig. 3!. Figures 3 and 4 show~i! that the zeros
in the complex temperature plane sensitively detect ph
transitions and~ii ! it is very important to useb as the natural
variable since only this yields continuous pictures of therm
dynamic properties.

In conclusion, we have found that the classification
phase transitions in small systems based on the curvatu
the microcanonical caloric curves seems to be not rigor
enough to make distinct statements about the order. In
zero-classification scheme, the potential-energy surface c
acterizes the phase behavior of the system, while in
scheme of Gross, the density of states is the characteri
quantity. We have shown that the investigation of the wh
complex temperature plane adds a valuable amount of in
mation in order to classify phase transitions in small syste
ns,

d
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